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Abstract: Software reliability assessment has been explored by many researchers over the past decades. With the increasing 

development of new complex software systems, accurate methods for estimating reliability model parameters are needed. 

Facilitated by the increasing use of computer systems in various sectors such as air traffic control, banking, industrial processes, 

and government operations, developing accurate reliability assessment methods is indispensable. The Delayed S-shaped 

software reliability model is one of the non-homogeneous Poisson process (NHPP) software reliability models proposed for 

capturing error detection and removal processes in software reliability testing. Many researchers have fitted the model to 

software failure data and performed estimation using the Maximum Likelihood method and Bayesian approach, however, 

construction of Bayesian credible sets for the parameters of this model and comparison of their efficiencies with the Wald 

confidence intervals using simulation have not been explored. The Bayesian interval estimation was conducted with three 

different joint prior distributions assigned to the parameters α and β of the model, namely the gamma distributed informative 

prior and, 1/α, and 1/αβ as non-informative priors. The Bayesian credible intervals and Wald confidence intervals for the two 

parameters were compared on the basis of interval lengths and coverage probabilities. The simulation was assumed to emulate 

the end-user environment and can generate inter-failure times data for the study. The Delayed S-shaped reliability model 

variables were simulated with fixed parameters set at (α, β)=(20, 0.5). The hyperparameters for the informative prior were chosen 

such that they have minimal effect on the results. In other words, the prior information does not swamp the information from the 

data. The Bayesian method yields superior results, as evidenced by shorter interval lengths and higher coverage probabilities in 

Table 1. 

Keywords: Non-Homogeneous Poisson Process, Intensity Function, Software Reliability Model, Informative Priors, 

Bayesian Method, Wald Intervals, Maximum Likelihood 

 

1. Introduction 

Computers have increasingly been used in various sectors 

of contemporary society. Today, complex software systems 

are evidently and dominantly used in the healthcare sector, 

engineering, filmmaking industries, architects, education 

sector, military systems, traffic control in large urban centers, 

air traffic control, banking, industrial processes, financial 

sectors, and government operations, among others. The 

increased dependency has led to rapid changes in software 

systems, especially the development of more complex systems, 

posing major challenges to their reliability. Software is 

reliable if it can accomplish its defined functions under a given 

environment in a specified time period. Software reliability is 

the probability of failure-free software operations in a 

specified time period in a given environment [1]. Software 

defects can cause system failure, which is avoidable by 

developing reliable software. Usually, software defects are 

removed by running tests in a way that emulates the end-user 

environment, which is costly, challenging, and 

time-consuming [2]. Thus, software reliability modeling 

addresses these challenges by providing a framework for 

assessing current reliability, monitoring reliability assessment 

progress, and predicting future failures. Software testing is 
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done during the development stage to achieve desired 

reliability. Software reliability modeling is done by first 

statistically estimating the parameters of the model selected. 

Accurate estimation of the parameters is critical, especially 

because the model, with its estimated parameters, can be used 

to predict when the next error will occur and when to 

terminate the development process. The more accurate 

estimates of the parameters of the model selected, the more 

likelihood of accurate prediction; hence, reliable software. 

Several authors and researchers have developed various 

software reliability models over the past decades. The 

Non-homogeneous Poisson Process (NHPP) Delayed 

S-shaped software reliability model was developed by 

Yamada, S. etc. [3] and has an intensity function given by; 

λ(t)=αβ
2
te

-βt
                 (1) 

The intensity function represents the error content 

represented per unit testing time. The model was developed by 

modifying the Goel-Okumoto (G-O) model to make it 

S-shaped [4]. The model is appropriate because it emulates the 

real testing scenario. Based on experience, the cumulative 

number of errors curve is usually S-shaped [3]. The S-shape 

occurs because, at the beginning of the testing process, some 

errors might be covered by others. As such, removing a 

detected error at the beginning of the test reduces the failure 

intensity slightly because other errors in the same test data will 

still cause a failure. Before the detected errors are removed, 

the ones initially covered remain undetected [5]. The Delayed 

S-shaped NHPP model also captures the learning process 

through which software users become well acquainted with 

the software and test tools. The model assumes that the 

probability of failure detection at any time is proportional to 

the current number of faults in the software, the initial error 

content of the software is a random variable, and detected 

errors are simultaneously removed without introducing other 

errors [5]. Further, there is a delay between the time the error 

is detected and when it is reported [6]. Lai, R. & Garg, M. [7] 

also argued that the Delayed S-shaped model was developed 

to account for the delay (lag) in error detection and its 

removal. 

Several researchers have used the Delayed S-shaped 

software reliability model in the software reliability test. Lee, 

T. Q. etc. [8] used the Delayed S-shaped software reliability 

model to propose a Bayesian model for estimating expected 

test cost and reliability. The researchers extended the Delayed 

S-shaped model to cope with the situation of insufficient 

historical data for enhancing software reliability prediction. 

Even though the researchers used gamma-distributed 

informative prior, the primary purpose of the research was to 

estimate cost and reliability using the extended model. Yin, L. 

& Trivedi Kishor, S. [6] carried out a confidence interval 

estimation of NHPP-based software reliability models, 

including the Goel-Okumoto and the Delayed S-shaped NHPP 

models. The researchers computed Wald confidence intervals 

and Bayesian methods but used a non-informative prior given 

by 1/α. The Bayesian approach is advantageous since it allows 

the combination of prior information with more recent 

information obtained from field data or tests [9]. 

This paper focuses on Bayesian and Wald interval 

estimation for the parameters of the Delayed S-shaped model. 

The joint gamma-distributed informative prior, 1/αβ, and 1/α 

were used as prior distributions for Bayesian analysis. Wald 

confidence intervals for the parameters of the model were first 

constructed, followed by Bayesian credible intervals. The 

confidence and credible intervals were compared using 

interval lengths and coverage probabilities on the basis of 

simulation. 

2. Non-Homogeneous Poisson Process 

with Delayed S-Shaped Intensity 

Function 

Let ���� denote the number of events occurring in a time 

interval �0, �]. A counting process �����, � ≥ 0
 is said to be 

a non-homogeneous Poisson process (NHPP) with intensity 

function ���� if it satisfies the following conditions; 

i N�0� = 0 
ii The process has independent increment property such 

that ����, ���, ����, ���, … , ������, ���  are 

independent random variables for any specified time 

points �� < �� < �� < ⋯ < �� where �� = 0. 

iii The probability that n failures occur at a time interval of �0, �� is given by; Pr	�N�t� 	= 	n
 	= �����]��! e�����, where m (t) is the mean 

value function denoting the expected number of failures and is 

given by; m	�t� 	= 	# ����$�%� , and λ�t�	 is the intensity 

function. 

iv The process' failure rate is given by the probability that 

exactly one failure occurs within a small-time interval Δt	denoted by Pr�t, t	 + 	Δt� 	= 	Pr	�N�t, t	 + 	Δt�	– 	N�t� 	= 	1
 	=	λ	�t�	Δt	 + 	o�Δt�, where λ�t� is the intensity function. 

v The probability that more than one failure occurs within 

a small interval of time, Δt,	 is negligible. i.e., Pr	�N�t	 + 	Δt�	– 	N�t� 	≥ 	2
 	= 	o�Δt�. 

The NHPP with Delayed S-shaped intensity function is a 

software reliability growth model which is commonly used in 

capturing the removal of software errors. Let 0 < �� < �� <⋯ < �� ≤ � be the software failure times in the time interval �0, �]. 
3. Wald Confidence Intervals 

Suppose that ��, ��, … , ��  denote the .  observed failure 

times in the interval �0, �]. Then the likelihood function for 

the Delayed S-shaped software reliability model with intensity 

function in (1) is given by; 

L0α, β3�4 = e�5�%� ∏ ���7��78� = e�9�����:;<�=>?	��;<� ∏ 0αβ�t7e�;�@4�78�   
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= α�β���∏ t7�78� �e�; ∑ �@e�9�����:;<� =>?��;<��                              (2) 

The Log-likelihood function of the model is given by; 

B0α, β3�4 = .BCDE + 2.BCDF + log�∏ t7�78� � − F ∑ t7 − α�1 − �1 + βT� exp�−βT��             (3) 

The procedure for constructing Wald confidence intervals is 

described as follows: Differentiate the log-likelihood function B0E, F/�4 partially with respect to E and F and equate the 

resultant derivative to zero. This yields the following two 

equations. 

�N − O1 − �1 + FP�Q�RST = 0          (4) 

and; 

��R − �∑ �7�78� � − EFP�Q�RS = 0         (5) 

Equations (4) and (5) are then simultaneously solved 

numerically to obtain the maximum likelihood estimates EU 

and FV  of the parameters E and F. 

The asymptotic variances of the estimates of E	and F are 

obtained from the inverse observed Fisher Information matrix, W0EU, FV4, which is the matrix containing negative second order 

derivatives of the log-likelihood function in (3). 

I�EU, FV� = 	 YZ[\]^_09,;3%4ZN[ Z[\]^_09,;3%4ZNZRZ[\]^_09,;3%4ZNZR Z[\]^_09,;3%4ZR[
`	�N,R�80Na,Rb4     (6) 

where 

Z[\]^_09,;3%4ZN[ = − �N[              (7) 

Z[\]^_09,;3%4ZR[ = − ��R[ − E�1 + FP�P�Q�RS      (8) 

Z[\]^c09,;3%4ZNZR = −FP�Q�RS           (9) 

Suppose that the inverse of the observed Fisher information I�EU, FV� in (6) is given as 

I�EU, FV��� = deU��0EU, FV4 eU��0EU, FV4eU��0EU, FV4 eU��0EU, FV4f      (10) 

Therefore, the 100�1 − α�%	Wald confidence interval for E can be constructed as 

αa ± 	ij[keU��0EU, FV4lm[            (11) 

Similarly, the 100�1 − α�%	Wald confidence interval for E can be constructed as 

βn ± 	ij[keU��0EU, FV4lm[            (12) 

4. Bayesian Credible Intervals 

The Bayesian method has been adopted in the parameter 

estimation of software reliability models. When testing 

software reliability, researchers may be unable to obtain 

sufficient historical data, leading to small sample sizes, which 

are best used for estimating software reliability parameters by 

using the Bayesian approach [8]. The method depends on prior 

information, enabling researchers to incorporate expert 

opinions from previous studies into the current study [11]. The 

Bayes rule outlines that the accurate posterior estimate is 

obtained by combining prior knowledge with noisy sensory 

inputs (often represented by the likelihood function) as 

presented in the equation below [11]: 

o0p q⁄ 4 = 	s0p4 ∗ u�p q⁄ �           (13) 

The approach implies that the first step entails defining a 

probability distribution for the data, and the second involves 

choosing appropriate prior distributions for the model's 

parameters. The choice of the priors is often guided by the 

available information about the parameters of interest or 

intuition [10]. Although informative priors have been 

commonly used, theory has outlined methods for obtaining 

non-informative priors to address the limitation of being 

guided by intuitive knowledge. Such methods include using 

flat, conjugate, reference, and Jeffrey's priors. In this paper, 

three different priors were used: a gamma-distributed 

informative prior, a non-informative prior given by 1/E, used 

by Yin and Trivedi [6] with the same model, and a 

non-informative prior given by 1/EF. 

Although the Bayesian method has proven to be efficient in 

estimation, the posterior distribution may often be intractable 

such that it is impossible to perform exact sampling from it 

[12]. Moreover, the high dimensionality of the posterior 

distribution may require focusing on the marginal posterior 

distribution of each parameter, obtained by integrating out 

over the other parameters in the model [13]. One way to 

circumvent this problem is to use the Gibbs sampling 

technique by first obtaining full conditional distributions for 

each parameter [14]. However, if at least one of the full 

conditional distributions is of unknown distribution (difficult 

to sample from directly), samples can be generated using a 

Metropolis-Hastings-type Markov Chain Monte Carlo 

(MCMC) method. The Metropolis-Hastings MCMC approach 

consists of two steps [12]: (i) generate a new sample given the 

previous sample using some proposal distribution; (ii) 

compare the likelihood of the new sample to that of the 

previous sample to accept (use it for inference) or reject (use 

the previous sample again) the proposed sample. 

4.1. Gamma-Distributed Informative Prior 

We adopted the joint gamma-distributed prior for α and β, 

where the parameters are distributed as vwxxw�w, y� and vwxxw�z, $� , respectively and are assumed to be 

independent. The joint prior is then given by 
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π�α, β� ∝ α}��β~��e���9:�;�, E > 0, F > 0     (14) 

where a, b, c, and d, are hyper-parameters. 

Given the vector of observed software failure times �, the 

corresponding posterior distribution for α and β was obtained 

using (13) as follows; 

π�α, β|t̠� 	∝ π�α, β�L0α, β3�4 ∝ 	α}��β~��e���9:�;�	α�β���∏ t7�78� �e�; ∑ �@e�9�����:;<�=>?	��;<�  

∝ α�:}��F��:���Q�Nk�:����:RS�����l�Rk�:∑ %@�@�m l                          (15) 

The full conditional distributions were derived from the joint posterior distribution using the following formulas: 

��α|β, t̠� = ��9,;|�̠�# ��9,;|�̠��N                                       (16) 

��β|α, t̠� = ��9,;|�̠�# ��9,;|�̠��R                                       (17) 

Using (16), the full conditional for alpha was obtained as; 

p�α|β, t̠� ∝ 	α�:}��Q�N0�:����:RS�����4                                (18) 

which is a kernel of gamma distribution with shape parameter �n + a� and scale parameter y + 1 − �1 + FP�Q�RS. 

Similarly, using (17), the full conditional for F was obtained as; 

π�β|α, t̠� ∝ F��:���QN��:RS�����Q�Rk�:∑ %@�@�m l                             (19) 

which is of unknown distribution. 

4.2. Prior Function �/�� 

Using this prior and (2) and (13), the posterior distribution was obtained as follows; 

π�α, β|t̠� 	∝ �NR 	α�β���∏ t7�78� �e�; ∑ �@e�9�����:;<� =>?��;<��  

∝ α���F����Q�Nk����:RS�����l�R ∑ %@�@�m                                  (20) 

The full conditional distributions were obtained using (16) and (17) as follows; 

p�α|β, t̠� ∝ 	α���Q�N0����:RS�����4                                   (21) 

which is a kernel of gamma distribution with shape parameter, n, and scale parameter (1-(1+βT) e
-βT

). 

π�β|α, t̠� ∝ F����QN��:RS�����Q�R ∑ %@�@�m                                 (22) 

which is of unknown distribution. 

4.3. Prior Function �/� 

For this prior, the posterior density function was obtained using (2) and (13) as follows; 

π�α, β|t̠� 	∝ �N . α�β���∏ t7�78� �e�; ∑ �@e�9�����:;<� =>?��;<�� ∝ α���F��Q�Nk����:RS�����l�R ∑ %@�@�m 	          (23) 

The following full conditional distributions were obtained 

from the posterior density function using (16) and (17). 

π�α|β, t̠� ∝ 	α���Q�N0����:RS�����4        (24) 

which is a kernel of gamma distribution with shape parameter, 

n, and scale parameter 01 − �1 + FP�Q�RS4. 

π�β|α, t̠� ∝ F��QN��:RS�����Q�R ∑ %@�@�m        (25) 

which is of unknown distribution. 

We note that it is difficult to sample directly from the 

derived joint posterior distributions in (15), (20), and (13). A 

possible way of simulating these posterior densities is by 

using their corresponding full conditional distributions for 

the two parameters α given β, using the Gibbs sampling 

approach. However, the full conditional distributions s0F E, �⁄ 4 for β are improper for all the three types of priors 

considered, showing that it may be difficult to sample from 

them directly, necessitating the use of the 

Metropolis-Hasting MCMC approach. In this regard, the 

Metropolis-Hasting step within the Gibbs sampling 

technique was used to sample from the posterior 

distributions using the following algorithm. 

Step 1: Start with � = 1  and set the initial values of 
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Op��� = 0E���, F���4T 

Step 2: Sample E�  from E� ∼ �0E3F���, �4  (which is 

gamma-distributed) to have the current state as �E�,  F��. 

Step 3: Using the proposal distribution of β, where the 

proposal was chosen as F~�0F�����, eR
�4, sample a candidate 

value for F���� using E� obtained in step two. 

Step 4: Generate �~��W��0,1� 

Step 5: Compute the MH acceptance ratio at the candidate 

value, p���� , and the previous value, p����� , using block 

updating. 

�� 
  ¡0�¢£¤¢∣ %4∗ ¦¡���§�m�∣ �¢£¤¢�
 ¡0��§�m�∣ %4∗ ¦¡��¢£¤¢∣ ��§�m��  

Step 6: If � - min �1,  ���, accept the candidate point �F�� 

with probability min �1,  ���: set p��� 
  p���� . Otherwise 

set p��� 
  p����� to have the current state �E�,  F��. 

Step 7: Repeat steps 2 to 6 until the desired sample size, k, is 

obtained. 

On the basis of the simulation of the joint posterior 

distribution of E  and F  histograms are constructed and 

100�1 I E�% credible intervals for the two parameters are 

computed as follows: Let © ∈ �0,1� . If F«
∗  and F¬

∗  are 

respectively the 
­
�  and ®1 I ­

�¯  posterior quantiles for F , 

then ( F«
∗,  F¬

∗ ) is a 100�1 I γ�%  credible interval for F . 

Similarly, if E«
∗ and E¬

∗  are respectively the 
­
� and ®1 I ­

�¯ 

posterior quantiles for E, then (E«
∗,  E¬

∗ ) is a 100�1 I γ�% 

credible interval for E. 

5. Simulation Study 

The study investigated the performance of the Wald and 

Bayesian interval estimation methods on the basis of data 

simulated from the Delayed S-shaped NHPP model's intensity 

function using the thinning algorithm provided by Lewis, P. W. 

& Shedler, G. S. [15]. It was assumed that the simulation 

process emulates the end-user environment and can generate 

inter-failure times data for reliability testing. An R code was 

developed to simulate interfailure times data when T = 100, λ0 

= 0.4, α0 = 20, and β0 = 0.05, where λ0 is the error content rate 

at time t = 0. The simulated data was used to sample α and β 

random variables from the posterior distributions using the 

Metropolis Hasting MCMC procedure as explained above. 

For the Bayesian method with informative prior, the 

hyperparameters were chosen such that they have minimal 

effect on the results. In other words, the prior information does 

not swamp the information from the data. Furthermore, since 

Metropolis Hasting MCMC was used, we proposed a normal 

distribution for β and set the unknown parameter theta at θ = 

0.05. Once the data for α and β were obtained, they were 

assessed to determine general patterns. First, trace plots were 

constructed for α and β random variables to examine stability. 

As shown in Figure 1, the blue trace plots were generated 

using the gamma-distributed informative prior, the red trace 

plots were constructed using the data from the Bayesian 

method with 1/αβ prior, and the green trace plots are for 1/α 

prior. The plots show the stability of the sampled data since 

they contain the initial values indicated by the horizontal lines 

and have almost uniform spikes upwards or downwards. 

 

Figure 1. Trace plots for α and β generated using the three priors. 
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Figure 2. Histogram for α and β generated using informative prior. 

 

Figure 3. Histogram for α and β generated using 1/EF prior. 

 

Figure 4. Histogram for α and β generated using 1/E prior. 

Another issue of interest was to examine the marginal 

posterior distribution of the two parameters. Figures 2, 3, and 

4 show histograms for α and β constructed using the three 

Bayesian methods (gamma-distributed informative prior and 

non-informative priors; 1/αβ and 1/α. Since the histograms are 

approximately normally distributed, we share the value of © 

equally to both tails of the marginal posterior distribution of 

each parameter. 

A total of 5000 samples of interfailure times data were 

generated and used to sample 5000 datasets, each for α and β 

from the three posterior distributions. The samples had an 

average size of 23 interfailure times. An R code was 

developed such that the same 5000 samples of interfailure 

times data were used for the four methods (Wald and three 

Bayesian approaches) for accurate comparisons. For the Wald 

technique, the datasets were used with the Log-likelihood 

function to compute parameter estimates, construct 

confidence intervals, and generate coverage probabilities 

through repeated sampling. Moreover, Bayesian credible 

intervals and coverage probabilities were obtained for each 

sample of α and β random variables generated from the 

posterior distributions. In this regard, each method had a total 

of 5000 intervals. Interval lengths were obtained for each 

confidence and credible interval as the difference between the 

upper and lower bounds. Coverage probabilities for each 

method were estimated as the proportion of the 5000 

confidence and credible intervals, which contain the true 

parameter value. The coverage probabilities were recorded as 

obtained, while summary statistics (minimum, maximum, 

mean, and standard deviation) of widths of the 5000 

confidence and credible intervals for each method are 

presented in Table 1. The results indicate that two Bayesian 

methods (with informative and 1/αβ priors) have shorter 

average interval lengths than the Wald approach. Of the 

methods, Bayesian with informative prior was superior, 

yielding higher coverage probabilities and shorter average 

widths. 

Table 1. Estimated summary statistics and coverage probabilities of widths of the 95% Bayesian credible and Wald confidence intervals for the parameters E 

and F on the basis of 5000 samples when T = 100, E� 
 20, and F� 
 0.05. 

Method  Min Max Mean Std dev Cp 

Wald E  11.40 61.40 18.83 3.7986 0.943 

 F  0.02811 0.09064 0.04123 0.00685 0.95 

Bayesian (Informative) E  11.48 19.12 15.06 1.2149 0.988 

 F  0.02297 0.07146 0.03665 0.00610 0.960 

Bayesian (1/EF) E  11.18 25.07 17.79 2.1118 0.95 

 F  0.02098 0.08831 0.03627 0.00771 0.934 

Bayesian (1/E) E  11.60 855.77 22.50 31.12 0.955 

 F  0.02805 0.09369 0.04190 0.00711 0.934 

 

The estimated coverage probabilities of Wald confidence 

and Bayesian credible intervals for α and β were reasonably 

close to the theoretical value of 0.95, as shown in Table 1. 

Moreover, trace plots were constructed for the interval lengths 

of α and β, as shown in Figures 5 and 6. All the plots were 

constructed using the same limits on the y-axis for easier 

comparison. It can be noticed that the interval lengths for the 

Bayesian credible intervals using the joint gamma-distributed 

informative prior were shorter than both for Wald and 

non-informative priors. For the parameter α, the interval 

lengths generated using the gamma-distributed informative 

and 1/αβ priors had shorter and uniform downward and 

upward spikes, as displayed in Figure 5, the second and third 

graphs. The behavior of the graphs shows that the two interval 

estimation methods have increased precision, quantified by 

smaller standard deviation values in Table 1. The first graph in 

Figure 5, generated using the Wald approach, shows long 

upward spikes but almost uniform downward spikes. However, 
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the fourth graph has long upward spikes, suggesting that the 

method would yield larger credible intervals than Wald and 

the other two Bayesian methods. The large standard deviation 

of 31.12 quantifies the long upward variable spikes. 

 

Figure 5. Trace plots for interval lengths of α. 

 

Figure 6. Trace plots for interval lengths of β. 

In Figure 6, the spikes for the interval lengths for the Wald 

confidence and Bayesian credible intervals show a similar 

pattern. The downward spikes for the four trace plots are 

shorter and tend to be uniform. However, the long upward 

spikes are fewer and a bit shot in the second graph generated 

using the Bayesian method with gamma-distributed 

informative prior. Smaller and slightly different standard 

deviations for β reported in Table 1, column 6, indicate the 

reason for similar behavior in the graphs. 

6. Conclusion 

This article explored interval estimation in an NHPP with a 

Delayed S-shaped intensity function using the Wald and 

Bayesian methods. Parameter estimation is a crucial step in 

software reliability assessment because the obtained values 
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can be used in prediction. Commonly explored approaches to 

assess the performance of different interval estimation 

methods include obtaining interval lengths and coverage 

probabilities. We used Bayesian approaches with informative 

and non-informative priors to identify better methods that 

enhance estimation accuracy in software reliability 

assessment. We compared the two methods using coverage 

probabilities and interval lengths on the basis of simulated 

data. Through repeated sampling, 5000 samples were 

generated and used to construct confidence and credible 

intervals and to compute coverage probabilities. The Bayesian 

method using the gamma-distributed informative prior yielded 

credible regions with shorter lengths, and higher coverage 

probabilities compared to the Wald and other Bayesian 

approaches. Moreover, the Bayesian method using a 

non-informative prior given by 1/αβ also yielded shorter 

interval lengths than the Wald approach. However, the 1/α 

non-informative prior yielded unstable results for E, indicated 

by the long upward spikes in the last graph in Figure 5. Thus, 

the method may not be appropriate because it contains 

implausible values of the two parameters. The study results 

indicate that the Bayesian approach is more important, 

appropriate, and precise in estimating the parameters of the 

Delayed S-shaped NHPP software reliability model. 
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