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Abstract: The relationship between two data matrices has been studied in the interbattery factor analysis. When two data
matrices are partitioned in rows, the relationship between two data matrices has been studied in the STATICO method. The main
advantage of this method is the optimality of the compromise of co-structures. It is well known that the weighting coefficients of
the compromise may be contrary sign in some cases and make it uninterpretable. Thus, many multivariate data analysis methods
have been developed, particularly those designed to tackle the fundamental issue: the description of the relationships between
two data matrices. This can be studied by successive modeling approaches as well as by a simultaneous modeling approach.
These methods are based on co-inertia and can be reduced to finding the maximum, minimum, or other critical values of a
ratio of quadratic forms. However, all these methods are successive. In this paper, we propose two algorithms. The first one
called sDO-CCSWA (successive Double-Common Component and Specific Weight Analysis) maximizes the sum of squared
covariances, by first finding the best pair-component solution, and repeating that process in the respective residual spaces. The
sDO-CCSWA is a new monotonically convergent algorithm obtained by searching for a fixed point of the stationary equations.
The second approach is a simultaneous algorithm (DO-CCSWA) which maximizes the sum of squared covariances.

Keywords: Interbattery Factor Analysis, STATICO, Common Component and Specific Weight Analysis

1. Introduction

Interbattery factor analysis [16] allows to investigate the
relationships between two data sets X and Y of p and
q variables observed on n individuals. Interbattery factor
analysis consists of finding components cX = Xu and cY =
Y v, such that their covariance is maximal. Thus, Interbattery
factor analysis consists of maximizing:

f(u, v) = cov(Xu, Y v), (1)

subject to the normalization constraints

||u|| = ||v|| = 1 (2)

Another way to study the relationship between two data
matrices consists of finding the component cX = Xu which
characterizes the set covariances of the variables yl (l =
1, . . . , q) of Y , and cY = Y v characterizes the set covariances
of the variables xh (h = 1, . . . , p) of X . This way can be
found in [11]. Thus, they maximize the following criterion

f(u, v) =

[
p∑

h=1

cov2(Y v, xh)

][
q∑

l=1

cov2(Xu, yl)

]
(3)

subject to the normalization constraints (2). This criterion is
equivalent to maximize

f(u, v) = (u′Ku)(v′Hv) (4)
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where K = VXY VY X and H = VY XVXY are two positive
semidefinite symmetric matrices [12]. This method can be
further generalized by applying it to two different sets of
matrices, centered column wise, which we shall refer to as
X = [X ′1, . . . , X

′
i, . . . , X

′
M ]′ and Y = [Y ′1 , . . . , Y

′
i , . . . , Y

′
M ]′,

measured on different groups of individuals. ni×p data matrix
Xi and ni×q data matrix Yi are called a group. The number of
individuals of each pair of groups can differ from one pair of
groups to another. The main aim is to investigate the stability
of the relationships between pairs of groups of variables. To
study the stability of relationships between several pairs of
matrices, [14] has proposed the STATICO method. STATICO

is a Partial Triadic Analysis [15] on the series of cross product
matrices obtained by crossing the two data matrices of a pair. It
benefits from the three-steps computation scheme of STATIS-
like methods (interstructure, compromise, intrastructure). It is
well known that the weighting coefficients of the compromise
may be contrary sign in some cases. Thus, alternative methods
have been proposed which maximize the sum of covariances
and the sum of squared covariances between components, with
orthonormality constraints on the components. For instance,
[9] has proposed sCIA3 (succesive co-inertia analysis 3),
which maximizes

f(u, v) =

[
M∑
i=1

p∑
h=1

cov2(xih, Yiv)

][
M∑
i=1

q∑
l=1

cov2(Xiu, yil)

]
(5)

Subject to the normalization constraints (2). This criterion
is equivalent to maximize

f(u, v) =

M∑
i=1

(u
′
Kiu)

M∑
i=1

(v
′
Hiv) (6)

Subject to the constraints ||u|| = ||v|| = 1, with Ki =
VXiYi

VYiXi
and Hi = VYiXi

VXiYi
. Authors proposed

an orthogonal approach to obtain partial components of the
matrices Xi and Yi. All these methods find loading vectors u
and v which can be seen as common components as is the case
with [5].

In addition, the criteria developed by [9] and [14] are
successive approaches. That is, after finding an optimal
pair of first components, these components are fixed and
the second components are found in the respective residual
spaces, orthogonal to the first components. This approach
has its merits in finding the single most common component
of all sets. However, when more than one component
is desired, components other than the first one may be
much easier to discern when a simultaneous approach is
adopted. The situation is very unlike standard Principal
Component Analysis, where the components are nested and
the explained variance can be redistributed by rotation. These
methods possess neither of these properties, which makes
it worthwhile considering a simultaneous alternative [10].
In this paper, a simultaneous algorithm called DO-CCSWA
(Double-Common Component and Specific Weight Analysis)
is proposed. The DO-CCSWA criterion maximizes the product
of two sums of squared covariances. A successive approach
(sDO-CCSWA) which maximizes the product of two sums
of squared covariances is also proposed. This approach is a
sequence of the evolution of the criterion (6). It is important to

note that the optimization criteria are considered as a double
common component and specific weight analysis (CCSWA)
proposed by [5]. It is also worth mentioning that CCSWA and
HPCA (Hierarchical principal component analysis described
in [17]) are two equivalent methods [4].

Finally, we will conclude this paper with a detailed analyses
of a practical example. This paper is organized as follows: In
sections 2 and 3, we will propose the sDO-CCSWA method
and its simultaneous approach. In section 4, an overview of
application of DO-CCSWA for two matrices is given.

2. Successive Approach of DO-CCSWA
In this section, we propose a method for analyzing the

relationships between two sets of variables. The sDO-CCSWA
method consists of optimizing the following criterion:

Maximize f(u, v) =

[
M∑
i=1

(u
′
Kiu)2

][
M∑
i=1

(v
′
Hiv)2

]
(7)

Subject to the normalization constraints

||u|| = ||v|| = 1.

The objective of sDO-CCSWA is to find loading vectors
u and v. These loading vectors must be the same for
all matrices Xi and Yi and allow to find specific weights.
These specific weights can be considered as the projected
variances associated with matrices Xi and Yi. However, the
loading vectors are obtained sequentially: the related group
components are constrained to be orthogonal to the previous
ones.

The following Lagrangian function related to optimization
problem (7) is considered:

L(u, v, λ1, λ2) =

[
M∑
i=1

(u
′
Kiu)2

][
M∑
i

(v
′
Hiv)2

]
+ 2λ1(1− u

′
u) + 2λ2(1− v

′
v) (8)
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Where λ1 and λ2 are the Lagrange multipliers. The
maximum of f follows from the requirement that the first
order partial derivatives of L are simultaneously zero at the
maximum of f and that the Hessian is negative. The following
proposition specifies the role of the loading vectors in the
criterion to be maximized.

Property 2.1 [Solution of order 1] The loading vectors u and
v verify the stationary equations:

M∑
i=1

(u
′
Kiu)Kiu = ruu (9)

M∑
i=1

(v
′
Hiv)Hiv = rvv (10)

λ = rurv where ru =

M∑
i=1

(u
′
Kiu)2 and rv =

M∑
i=1

(v
′
Hiv)2

Proof 2.1: Canceling the partial derivatives of the
Lagrangian function with respect to u, v, λ1 and λ2 yields the
following stationary equations:

M∑
i=1

(v
′
Hiv)2

M∑
i=1

(u
′
Kiu)Kiu = λ1u (11)

M∑
i=1

(u
′
Kiu)2

M∑
i=1

(v
′
Hiv)Hiv = λ2v (12)

with the normalization constraints

u
′
u = 1 et v

′
v = 1 (13)

By combining (11), (12) and (13), we show that

λ = λ1 = λ2 =

M∑
i=1

(u
′
Kiu)2

M∑
i=1

(v
′
Hiv)2 = rurv = f(u, v) (14)

By replacing (14) into (11) and (12), it follows the stationary
equations (9) and (10).

These stationary equations have no analytical solution,
but they can be used to build a monotonically convergent
algorithm for optimization problem (7). After having centered
and standardized the matrices Xi and Yi, we set Xi,0 = Xi

and Yi,0 = Yi. We use the following algorithm:

A. Initialization

A.1 Choose randomly u0 and v0 such that ||u0|| =
||v0|| = 1 and ε (e.g., 0.00001);

A.2 Compute f(u0, v0) =
∑M

i=1(u
′

0Kiu0)2
∑M

i=1(v
′

0Hiv0)2.

B. Computing of the updates
For k = 1, 2, . . .

B.1 Compute and normalize the loading vectors

uk =

M∑
i=1

(v
′

k−1Hivk−1)2
M∑
i=1

(u
′

k−1Kiuk−1)Kiuk−1

B.2 Compute and normalize the loading vectors

vk =

M∑
i=1

(u
′

kKiuk)2
M∑
i=1

(v
′

k−1Hivk−1)Hivk−1

C. Test
C.1 While f(uk, vk)−f(uk−1, vk−1) ≥ ε, set u0 = uk

and v0 = vk and go to B
Else we stop the algorithm and go to C.2.

C.2 For i = 1, · · · M ,
Compute cXi,k

= Xiuk and cYi,k
= Yivk;

Compute the specific weights αi,k = u
′

kKiuk =∑q
l=1 cov

2(Xiuk, yil) and δi,k = v
′

kHivk =∑p
h=1 cov

2(Yivk, xih)
End

End

The specific weights are positive and represent the
proportions of the explained variances by uk and vk. It is
important to note that the relative proportion can be found at
the step k as follows:

qi,k =
(u
′

kKiuk)2∑M
i=1(u′kKiuk)2

=
α2
i,k

ruk

=
α2
i,krvk
λk

and si,k =
(v
′

kHivk)2∑M
i=1(v′kHivk)2

=
δ2
i,k

rvk
=
δ2
i,kruk

λk

We will now show that this algorithm for maximizing
f(u, v) subject to ||u|| = ||v|| = 1 is monotonically
convergent. Here, the algorithm is said to be monotonically

convergent if and only if there is continuous and bounded
function f such that que f(u, v) < f(ū, v̄), with ū and v̄, the
updates.
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By setting αi = u
′
Kiu, βi,v = rvαi and bi = VYiXi

u a
vector of Rq , the function (7) can be written

f(u, v) = u
′

M∑
i=1

rvαiKiu = u
′

M∑
i=1

βi,vVXiYi
bi (15)

By fixing the loading vector v, we can set

ū =

∑M
i=1 βi,vVXiYi

bi

‖
∑M

i=1 βi,vVXiYibi‖
(16)

We show that the passage in the loop of the iteration
1 modified f(u) so that the function ∆f(u) = f(ū) −
f(u) is nonnegative for any vector u. By setting θ =

‖
∑M

i=1 βi,vVXiYibi‖, we obtain:

∆f(u) = f(ū)− f(u) =

M∑
i=1

βi,vb
′

iVYiXi ū− u
′

M∑
i=1

βi,vVXiYibi = θ(1− cos(u,
M∑
i=1

βi,vVXiYibi)) (17)

Where cos(u,
∑M

i=1 βi,vVXiYi
bi) is the cosine between u

and
∑M

i=1 βi,vVXiYibi. This cosine is smaller or equal to 1.
Which implies f(u) increases at each iteration of the algorithm
or f(u) ≤ f(ū) in other words f(u, v) ≤ f(ū, v).

By setting γi,ū = (v′Hiv)rū, f(v) = f(ū, v) and ci =
VXiYi

v a vector of Rp, the function f(ū, v) can be written
f(ū, v) = v

′∑M
i=1 γi,ūVYiXi

ci. By setting

v̄ =

∑M
i=1 γi,ūVYiXi

ci

‖
∑M

i=1 γi,ūVYiXi
ci‖

(18)

and by showing as previously f(ū, v) ≤ f(ū, v̄), it follows
that

f(u, v) ≤ f(ū, v) ≤ f(ū, v̄) (19)

It can be concluded that the algorithm is monotone. The
function f(u, v) being bounded and continuous in the compact
set define by the constraints, then it converges. By modifying
the starting point of the algorithm, we do not find the same
maximum because we can obtain a local maximum on the
surface defined by the constraints.

At the order s > 1, the sDO-CCSWA criterion can be
written:

f(us, vs) =

M∑
i=1

(u
′

sKius)
2

M∑
i=1

(v
′

sHivs)
2 (20)

subject to the constraints ||us|| = ||vs|| = 1 and the
orthonormality constraints u

′

sut = v
′

svt = 0 for s = 1, · · · , r
and t < s, where r ≤ min(p, q) is the rank of the matrices
VXiYi

.
After having shown the convergence of the algorithm, the

solutions of order s > 1 of optimization problem (7) are given
in proposition 2.2 below.

Property 2.2 If we note Xi,0 = Xi and Yi,0 = Yi, the
loading vectors us and vs (s ≥ 2) are the solutions of order
1 of the sDO-CCSWA of the matrices Xi,s−1 and Yi,s−1, with
Xi,s−1 = Xi,s−2P

⊥
us−1

, Yi,s−1 = Yi,s−2P
⊥
vs−1

. These loading
vectors verify the following stationary equations:

M∑
i=1

(u
′

sKi,s−1us)Ki,s−1us = rus
us (21)

M∑
i=1

(v
′

sHi,s−1vs)Hi,s−1vs = rvsvs (22)

λs = rusrvs where rus =

M∑
i=1

(u
′

sKi,s−1us)
2 et rvs =

M∑
i=1

(v
′

sHi,s−1vs)
2.

To solve this system of equations, we apply the same
algorithm.

A similar proof of this result can be found in [8].
sDO-CCSWA allows to find two sets of orthonormal loading

vectors (us)s and (vs)s. Otherwise, sets of components are not
orthogonal. To represent p variables of the data matrix Xi, we
project rows of the matrix Ki on the loading vectors us. In the
same way, to represent q variables of the data matrix Yi, we
project rows of the matrix Hi on the loading vectors vs.

Loading vectors us and vs and components cXi,s
and cYi,s

may be calculated for the deflation. Undesirable properties of
some methods, such as convergence problems or loss of data
information due to deflation procedures, are studied by [17]
and recently in [1].

The sDO-CCSWA criterion (7) is equivalent to the
following maximization criterion:

f(u, v) =

M∑
i=1

(u
′
Kiu)2 +

M∑
i=1

(v
′
Hiv)2 (23)

Subject to the normalization constraints

||u|| = ||v|| = 1.
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3. Simultaneous Approach of
DO-CCSWA

In this section, we will extend the sequential model to a
general model. As demonstrated by [3], the advantage of DO-
CCSWA algorithm is that it is monotonically convergent, it
reaches a stable solution faster and has a better performance
in terms of convergence speed compared to sDO-CCSWA

algorithm. By using the deflation procedure, some of the
information in data matrices may be lost in the deflation step.
Let U = [u1, · · · , ur] be the p × r loading matrix containing
the loading vectors us and V = [v1, · · · , vr] be the q × r
loading matrix containing the loading vectors vs. The problem
consists of finding two loading matrices U and V associated
with two sets of variables. We define the DO-CCSWA method
as the following maximization problem:

f(U, V ) =

[
M∑
i=1

‖diag(U
′
KiU)‖2

][
M∑
i=1

‖diag(V
′
HiV )‖2

]
(24)

Subject to the constraints

U
′
U = V

′
V = Ir.

It is important to note that ||diag(A)||2 = tr(Adiag(A)) =∑r
s=1 a

2
ss where A = (asl)1≤s,l≤r.

Furthermore, it is of interest to note that maximization
of the above criterion can be written more explicitly as the
maximization of criterion:

f(U, V ) =

[
M∑
i=1

r∑
s=1

(u′sKius)
2

][
M∑
i=1

r∑
s=1

(v′sHivs)
2

]
.

From this new description of DO-CCSWA, it is clear that
the case r = 1 leads to sDO-CCSWA.

Many papers have dealt with the problem of finding
general principles from which families of algorithms can be
constructed. The approach presented in the present paper is
almost the same as those by [10], [6] and recently by [7].

To maximize f subject to the constraints U
′
U = V

′
V =

Ir, we present a monotonically convergent algorithm. This
iterative algorithm that increases the function f monotonically
subject to the constraintsU

′
U = V

′
V = Ir can be constructed

by looking for two updates U∗ and V ∗ of U and V , so that
f(U, V ) ≤ f(U∗, V ∗). For reasons of notational convenience,
let TUV and HUV be the current matrices:

TUV = (

M∑
i=1

KiUdiag(U
′
KiU))(

M∑
i=1

tr(V
′
HiV diag(V

′
HiV ))

and KUV = (

M∑
i=1

HiV diag(V
′
HiV ))(

M∑
i=1

tr(U
′
KiUdiag(U

′
KiU))

In order to see how the DO-CCSWA approach can be
applied in the present context, let us consider briefly (25):

f(U, V ) = tr(U
′
TUV ) = tr(V

′
KUV ) (25)

It is well known that, if PDQ′ is the singular value
decomposition of the (p, r) matrix A, with P ′P = Q′Q =
QQ′ = Ir and D is a diagonal matrix, nonnegative and
with diagonal elements in weakly descending order, then the
maximum of tr(T ′A) subject to T ′T = Ir is obtained when
Z = PQ′ [2].

Before starting the iterations, we first centered and
standardized the data matrices Xi and Yi and we set Xi,0 =
Xi and Yi,0 = Yi. The algorithm derived above can be
summarized as

A. Initialization

A1. Choose randomly U0 and V0 such that U
′

0U0 =
V
′

0V0 = Ir and ε (e.g., 0.00001);
A2. Compute f(U0, V0)

B. Computing of the update of U

B.1 consider the singular value decomposition: TUV =
P∆L

′
, P
′
P = L

′
L = LL′ = Ir

B.2 Set U∗ = PL
′

C. Computing of the update of V

C.1 consider the singular value decomposition:
HUV = FΘG

′
, F
′
F = G

′
G = GG

′
= Ir

C.2 Set V ∗ = FG
′

D. Test

D.1 While f(U∗, V ∗)− f(U, V ) ≥ ε, set U = U∗ and
V = V ∗ and go to B, else we stop the algorithm
and go to D.2.

D.2 For i = 1, · · · M ,
compute the components cXi,k

= Xiuk and
cYi,k

= Yivk.
compute the distance between diag(U

′
KiU)

and diag(V
′
HiV ): di = ‖diag(U

′
KiU) −

diag(V
′
HiV )‖

compute the weights αi = ||diag(U ′KiU)|| =
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√∑r
s=1(u′sKius)2 and δi = ||diag(V ′HiV )|| =√∑r
s=1(v′sHivs)2

End

End

Specific weights αi and δi are nonzero and positive. It is
important to note that the relative proportions can be found as
follows:

qi =
α2
i

RU
et si =

δ2
i

RV

with RU =
∑M

i=1 ||diag(U ′KiU)||2 and RV =∑M
i=1 ||diag(V ′HiV )||2. It can be shown that at each step

of the iteration the value of f increases. We only show the
monotony related to U . That of V is demonstrated in the same

way. Thus

f(U, V ) ≤ f(U∗, V ) ≤ f(U∗, V ∗) (26)

We consider the sth diagonal element of U∗
′
TUV written as

u∗
′

s (

M∑
i=1

Kiusu
′

sKi)us(

M∑
i=1

‖diag(V
′
HiV )‖2) (27)

where us, s = 1, · · · , r, is a column of U . Let us set
Gs =

∑M
i=1Kiusu

′

sKi a positive semidefinite symmetric

matrix. Firstly, from ‖G
1
2
s us −G

1
2
s u∗s‖2 ≥ 0, we obtain

u
′

sGsus + u∗
′

s Gsu
∗
s ≥ 2u∗

′

s Gsus (28)∑M
i=1‖diag(V

′
HiV )‖2 ≥ 0 and by multiplying this

number in the two members of (28), it follows

f(U, V ) + (

M∑
i=1

‖diag(U∗
′
KiU)‖2)(

M∑
i=1

‖diag(V
′
HiV )‖2) ≥ 2(

M∑
i=1

tr(U∗
′
KiUdiag(U

′
KiU))(

M∑
i=1

‖diag(V
′
HiV )‖2) (29)

According to [2], the update U∗ of U verify the inequality

M∑
i=1

tr(U∗
′
KiUdiag(U

′
KiU))(

M∑
i=1

‖diag(V
′
HiV )‖2) ≥ f(U, V ) (30)

Combining this with (29) shows that

(

M∑
i=1

‖diag(U∗
′
KiU)‖2)(

M∑
i=1

‖diag(V
′
HiV )‖2) ≥ f(U, V ) (31)

On the other hand, from

‖(Ki)
1
2usu

′

s(Ki)
1
2 − (Ki)

1
2u∗su

∗′
s (Ki)

1
2 ‖2 ≥ 0 (32)

We obtain

u
′

sKius(u
′

sKius) + u∗
′

s Kiu
∗
s(u∗

′

s Kiu
∗
s) ≥ 2u∗

′

s Kius(u
∗′
s Kius) (33)

Multiplying (33) by
∑M

i=1‖diag(V
′
HiV )‖2 and summing over s and i, we obtain

f(U, V ) + (

M∑
i=1

‖diag(U∗
′
KiU

∗)‖2)(

M∑
i=1

‖diag(V
′
HiV )‖2) ≥ 2(

M∑
i=1

‖diag(U∗
′
KiU)‖2)(

M∑
i=1

‖diag(V
′
HiV )‖2) (34)

Finally, using inequality (31) we find

f(U∗, V ) ≥ f(U, V ) (35)

It can be concluded that the updateU∗ increases the function
(24). After switching the roles of U and V , a parallel
development can be given to prove that updating V by V ∗ and
to show the monotony respect to V .

The function f being bounded, continuous and monotone
in particular on the sets of loading vectors of U and V , then
the algorithm converges to a local maximum of f . To obtain

a global maximum, the algorithm is executed several times by
starting on several initializations. The largest local maximum
of the local maxima is retained to become the global maximum
of the function. The particular choice of U = U∗ implies
that U∗

′
TUV = LP

′
P∆L

′
= L∆L

′
is a positive semidefinite

symmetric matrix and ∆ contains the positive or null singular
values.

The representation of the individuals of the DO-CCSWA
simultaneous approach is similar to the sDO-CCSWA
successive approach. It is enough to use their coordinates in
the matrices XiU

∗ and YiV ∗ for the two groups of variables.
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The variables can be projected as supplementary elements
to help interpret the results of the analysis. To represent p
variables of the data matrix Xi, we project rows of the matrix
Ki on the columns of the matrices U∗. In the same way, to

represent q variables of the data matrix Yi, we project rows of
the matrix Hi on the columns of the matrices V ∗.

The DO-CCSWA criterion (24) is equivalent to the
following maximization criterion:

f(U, V ) =

M∑
i=1

‖diag(U
′
KiU)‖2 +

M∑
i=1

‖diag(V
′
HiV )‖2 (36)

Subject to the constraints

U
′
U = V

′
V = Ir.

4. Results

We illustrate the simultaneous DO-CCSWA method with an
example of ecological datasets. We reanalyze the datasets that
have been acquired by [13] and which serve as an illustration in
STATICO [14]. Specifically, we reanalyze two data matrices:
one data matrix X with 24 rows and 13 columns, containing
the ephemeroptera species and one data matrix Y with 24 rows
and 10 columns, containing the environmental variables.

The rows of both matrices correspond to 6 sampling
sites ordered upstream-downstream along a small stream, the
Méaudret. These 6 sites are sampled 4 times, in Spring,
Summer, Autumn and Winter.

The 24 × 13 data matrix X is partitioned in four
6 × 13 data matices Xi. The 13 columns of the
species data table correspond to 13 Ephemeroptera
species, which are known to be highly sensitive to water
pollution. These species are as follows: Eda=Ephemera,
Bsp=Baetis sp, Brh=Baetis rhodani, Bni=Baetis niger,
Bpu=baetis pumilus, Cen=centroptilum, Ecd=Ecdyonurus,
Rhi=Rhihrogena, Hla=Habrophlebialauta, Hab=Habroletoides
modesta, Par=Paraletophlebia, Cae=Caenis, Eig=Epheme-
rella ignita.

In addition, 24×10 data matrix Y is partitioned in four 6×10
data matices Yi. The 10 environmental variables are physico-
chemical measures: Temp=water temperature, flow, pH,
Cond=conductivity, Oxyg=oxygen, BDO5=biological oxygen
demand, Oxyd=oxidability, Ammo=ammonium, Nitr=nitrates
and Phos=phosphates.

The problem is to investigate the stability relationships
between Ephemeroptera species distribution and the quality of
water in the site typology.

The distances of each season are given in Table 1.
These distances allow to describe the evolution of the
relationship species-environment. The distance between two
configurations of points also measure the fit. These distances
are squared Euclidian distances between the rows of U ′KiU
and those of V ′HiV .

A constancy of these distances allows to conclude the
stability of the relationship. Autumn and Summer are the
two most important seasons for comparing the data sets, while
Winter and Spring are slightly less important. The variation

of the distance between Autumn and Summer is equal to
754.14. This is not the case in Winter and Spring, where
they differ from other seasons. We find exactly the same
results with the STATICO method where the structures are the
strongest in Autumn, both for environmental variables and for
Ephemeroptera species.

The specific weights of the data matrices over two updates
containing the loading vectors are given in Table 2. It
would give a complete view of the variability of two data
sets in each season. Thus, with the data matrices X and
Y , the relative proportions of the specific weights show
that the environmental variability and the diversity of the
ephemeroptera species are the weakest in Winter and Spring,
while Autumn has the highest relative proportion. The two
data matrices X and Y have very similar results. That is, there
is a common structure between two data matrices. Table 2 also
shows that much of the information is contained in the data
matrices X3 and Y3 (In Autumn).

Figure 1 on the left shows the position of the sites over two
loading vectors. It appears that a general organization of the
sites and species from one season to another. The sites S1 and
S6 have perfectly similar behavior characterized more or less
by a strong presence of the species (Bpu, Hla, Eda, Bsp, Eig),
while site S2 has bad scores for these same variables. Overall,
we note a size effect on axis 1 for the ephemeroptera species
on the right. The first axis is a pollution factor (Bpu, Hla, Eda,
Bsp, Eig), which produces a decrease of the environmental
variables richness in several sites.

The second axis (horizontal) opposes site S2 to site S6 on
the left. Figure 2 on the left shows the position of the sites over
two loading vectors. It shows that flows are high in the sites
S4 and S5 in Spring while the water temperature (”Temp”)
is strong in Winter. In Autumn, site S2 is characterized by
phosphate (”Phosp”), Ammonium (”Ammo”) and biological
oxygen demand (”BDO5”). In the site S5, we find the
importance of nitrates (”Nitr”) in relation to temperature
(”Temp”). The second axis is related with the upstream-
downstream structure of the river.

Figures 1 and 2 on the right represent the projection of
the columns of the matrices of two sets of variables. The
species are obtained by projecting the rows of Ki on U∗

and are contained XU∗. In the same way, the environmental
variables are obtained by projecting the rows of Hi on V ∗ and
are contained Y V ∗. This step is done for STATICO at the
intrastructure.



American Journal of Theoretical and Applied Statistics 2022; 11(1): 36-44 43

Figure 1. Map of the sites on the left and map of the species at
each season on the right.

Figure 2. Map of the sites on the left and map of the
environmental variables at each season on the right.

5. Conclusion
The DO-CCSWA method is algorithmic and uses matrix

operators obtained by crossing doubly the two data matrices
of a pair at each season. The main aim of DO-CCSWA
is to investigate the relationships between two data sets
structured in groups of variables. We have shown in this
paper that a single simple and powerful algorithm can be
used for investigate the relationships between two data sets.
The DO-CCSWA algorithm converges monotonically to a
stationary point, but convergence to the global optimum is not
guaranted. This method is different to STATICO and s3CIA.
These methods are sequential. STATICO is a Partial Triadic
Analysis on the series of cross product matrices obtained by
crossing the two data matrices of a pair. It benefits from
the three-steps computation scheme of STATIS-like methods
(interstructure, compromise, intrastructure). We wish to note
that the simultaneous DO-CCSWA method proposed is more
efficient than the s3CIA and STATICO methods in terms of
determining the solution and the used criterion. The special
case r = 1 of DO-CCSWA is a sequential method sDO-
CCSWA which leads to the same results. We have illustrated
DO-CCSWA for two matrices of data on an ecology testing
example.
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